Math, asked by avaninivas2002, 5 months ago


prove that (cos A+ sin A)^2 =1+sin 2A​

Answers

Answered by Flaunt
124

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

=>(CosA+SinA)^2=1+Sin2A

We take LHS to prove RHS

Identity :

\sf\boxed{ {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}

 \sf=  >  {(CosA + SinA)}^{2}  =  {Cos}^{2} A+  {Sin}^{2} A+ 2SinACosA

Formula :

\sf \star \boxed{Sin2x=2SinxCosx}\star

We can replace 2SinACosA by Sin2A

 \sf=  >  {Cos}^{2} A+  {Sin}^{2} A+ Sin2A

\sf\boxed{ {Sin}^{2} A + {Cos}^{2} A= 1}

 \sf\bold{=  > 1 + Sin2A}

\thereforeRHS=LHS (Proved)

Answered by pc0815532
0

Answer:

This is your answer I hope help you

Attachments:
Similar questions