Prove that
cos A sin (B-C) + sin B sin (C - A) + cos C sin (A-B) = 0.
Answers
Answered by
0
Step-by-step explanation:
ANSWER
Use sin formula
asinA=bsinB=csinC=k
sinA=ak,sinB=bk,sinc=ck
Also, sin(A−B)=sinA..cosB−cosA−sinB
=akcosB−cosA.bk
k(acosB−bcosA)
Similarity, sin(B−C)=k(bcosC−ccosB)
sin(C−A)=k(ccosA−acosc)
LHS=asin(B−C)+bsin(C−A)+csin(A−B)
=ak(bcosc−cosB)+bk(ccosA−acosC)+ck(acosB−bcosA)
=k(bccosA−bccosA)+k(accosB−accosB)+(abcos−abcosc)
=0+0+0
=RHS
Similar questions