Prove that Cos A upon 1 minus tan a + sin square A upon Sin A minus Cos A is equal to Sin A + Cos A
Answers
Answered by
30
Solution
LHS (cosA /1-tanA)+(sin^2A/sinA-cosA)
(cosA/1-sinA/cosA)+(sin^2A/sinA-cosA)
(cosA/cosA-sinA/cosA)+(sin^2A/sinA-cosA)
(cos^2A/cosA-sinA)+(sin^2A/sinA-cosA)
(cos^2A/cosA-sinA)-(sin^2A/cosA-sinA) (multiply sin^2A&sinA-cosA by -1)
cos^2A-sin^2A/cosA-sinA
(cosA-sinA)(cosA+sinA)/cosA-sinA)
cosA+sinA
RHS cosA+sinA
LHS=RHS
Hence proved
Similar questions
Math,
5 months ago
Math,
5 months ago
Science,
9 months ago
English,
9 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago