Math, asked by akashdeepsingh4218, 9 months ago

Prove that cos A upon 1 +tanA - sinA upon 1+ cot A = cosA - sinA

Answers

Answered by ihrishi
1

Step-by-step explanation:

 \frac{cos A}{1 +tan A }  -  \frac{sin A}{1 +cot A }  = cos A - sin A \\  \\ L.H.S. =  \frac{cos A}{1 +tan A }  -  \frac{sin A}{1 +cot A } \\   \\ =  \frac{cos A}{1 + \frac{sin A}{cos A}  }  -  \frac{sin A}{1 + \frac{cos A}{sin A}  } \\   \\ = \frac{cos A}{ \frac{ cos A+ sin A}{cos A}  }  -  \frac{sin A}{ \frac{ sin A+ cos A}{sin A}  } \\  \\  =  \frac{cos A \times cos A }{cos A+ sin A}  - \frac{sin A \times sin A }{cos A+ sin A} \\  \\  = \frac{cos ^{2}  A }{cos A+ sin A}  - \frac{sin ^{2}  A }{cos A+ sin A}\\  \\  = \frac{cos ^{2}  A  - sin ^{2}  A }{cos A+ sin A}   \\  \\ \frac{(cos  A   +  sin   A)(cos  A  - sin  A) }{cos A+ sin A}   \\  \\  = cos  A  - sin  A \\  \\  = R. H. S.  \\ \\  \therefore L.H.S. = R. H. S. \\\\thus \: proved

Similar questions