Math, asked by karrtik28, 5 hours ago

prove that cos C + cos D = 2cos C+D/2 cos C-D/2​

Answers

Answered by LaeeqAhmed
1

 \sf \purple{we \: know \: that}

 \red{  \boxed{\cos x =   \cos^{2}  \frac{x}{2}  -  \sin^{2} \frac{x}{2} }}

 \implies  \sf  \cos^{2}  \frac{C}{2}  - \sin^{2}  \frac{C}{2} + \cos^{2}  \frac{D}{2}  - \sin^{2}  \frac{D}{2}

 \implies  \sf  \cos^{2}  \frac{C}{2}  - (1 - \cos^{2}  \frac{C}{2})  + \cos^{2}  \frac{D}{2}  - (1 - \cos^{2}  \frac{D}{2})

\implies  \sf  2\cos^{2}  \frac{C}{2}   + 2\cos^{2}  \frac{D}{2}  -2

\implies  \sf  2(\cos^{2}  \frac{C}{2}   + \cos^{2}  \frac{D}{2}  -1)

\implies  \sf  2(\cos^{2}  \frac{C}{2}    - ( 1 - \cos^{2}  \frac{D}{2}   ))

\implies  \sf  2(\cos^{2}  \frac{C}{2}     - \sin^{2}  \frac{D}{2}   )

 \blue{    \boxed{\cos^{2}  a     - \sin^{2} b    =  \cos(a + b) \cos(a - b) }}

 \orange{\therefore  \sf   2 \:  \: cos    \small \:{\frac{C+D}{2} }  \: \:   cos   \: \frac{C - D}{2} }

HOPE IT HELPS !

Similar questions