prove that (cosα - cosβ) whole square + (sinα-sinβ) whole square = 4sin square α-βdivide by 2
Answers
Answered by
0
Answer:
To Prove:
( Cos A - Cos B )² + ( Sin A - Sin B )² = 4 Sin² ( A - B ) / 2
Considering LHS we get,
⇒ ( Cos²A + Cos²B - 2CosACosB + Sin²A + Sin²B - 2SinASinB )
⇒ ( Cos²A + Sin²A + Cos²B + Sin²B - 2 ( CosA.CosB + SinA.SinB )
⇒ [ 1 + 1 - 2 ( Cos ( A - B )) ]
⇒ [2 - 2 Cos ( A - B )]
⇒ 2 ( 1 - Cos ( A - B ))
Let ( A -B ) be denoted as X
⇒ 2 ( 1 - Cos ( X ) ) = 2 ( 2 Sin²(X/2) ) [ Reason: 1 - Cos 2x = 2Sin²x ]
⇒ 2 ( 2 Sin² ( A-B )/ 2 )
⇒ 4 Sin² ( A-B ) / 2
Hence Proved !!
Similar questions
English,
6 months ago
Math,
6 months ago
English,
6 months ago
Physics,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago