Prove that cos cube theta + sin cube theta/cos theta + sin theta added to cos cube theta - sin cube theta/cos theta - sin theta = 2.
Answers
Answered by
71
(cos³θ+sin³θ/cosθ+sinθ)+(cos³θ-sin³θ/cosθ-sinθ)
={(cosθ+sinθ)³-3cosθsinθ(cosθ+sinθ)}/(cosθ+sinθ)+{(cosθ-sinθ)³+3cosθsinθ(cosθ-sinθ)}/(cosθ-sinθ)
=(cosθ+sinθ){(cosθ+sinθ)²-3cosθsinθ}/(cosθ+sinθ)+(cosθ-sinθ){(cosθ-sinθ)²+3cosθsinθ}/(cosθ-sinθ)
=(cosθ+sinθ)²-3cosθsinθ+(cosθ-sinθ)²+3cosθsinθ
=cos²θ+2cosθsinθ+sin²θ+cos²θ-2cosθsinθ+sin²θ
=1+1
=2 (Proved)
={(cosθ+sinθ)³-3cosθsinθ(cosθ+sinθ)}/(cosθ+sinθ)+{(cosθ-sinθ)³+3cosθsinθ(cosθ-sinθ)}/(cosθ-sinθ)
=(cosθ+sinθ){(cosθ+sinθ)²-3cosθsinθ}/(cosθ+sinθ)+(cosθ-sinθ){(cosθ-sinθ)²+3cosθsinθ}/(cosθ-sinθ)
=(cosθ+sinθ)²-3cosθsinθ+(cosθ-sinθ)²+3cosθsinθ
=cos²θ+2cosθsinθ+sin²θ+cos²θ-2cosθsinθ+sin²θ
=1+1
=2 (Proved)
Answered by
71
Answer:
Step -by-step explanation:
Hope it helps you...
Enjoy doing maths...vote my answer if you like
Attachments:
Similar questions