Math, asked by Mahiikhan7461, 2 days ago

Prove that -Cos h2x=1+tan h^2x/1-tanh^2x

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have

 \dfrac{1 +  \tanh^{2} (x)}{1 -  \tanh^{2} (x) }

 =  \dfrac{1 +  \left \{  \dfrac{ {e}^{x} -  {e}^{ - x}  }{{e}^{x}  +   {e}^{ - x}  } \right \}^{2}  }{1 -  \left \{  \dfrac{ {e}^{x} -  {e}^{ - x}  }{{e}^{x}  +   {e}^{ - x}  } \right \}^{2}  }

 =  \dfrac{1 +  \dfrac{ ({e}^{x} -  {e}^{ - x} )^{2}  }{({e}^{x}  +   {e}^{ - x} )^{2} }   }{1 -  \dfrac{ ({e}^{x} -  {e}^{ - x}  )^{2} }{({e}^{x}  +   {e}^{ - x} )^{2}  }  }

 =  \dfrac{  \dfrac{({e}^{x}  +   {e}^{ - x} )^{2} +  ({e}^{x} -  {e}^{ - x} )^{2}  }{({e}^{x}  +   {e}^{ - x} )^{2} }   }{ \dfrac{({e}^{x}  +   {e}^{ - x} )^{2} -  ({e}^{x} -  {e}^{ - x}  )^{2} }{({e}^{x}  +   {e}^{ - x} )^{2}  }  }

 =  \dfrac{  ({e}^{x}  +   {e}^{ - x} )^{2} +  ({e}^{x} -  {e}^{ - x} )^{2}     }{ ({e}^{x}  +   {e}^{ - x} )^{2} -  ({e}^{x} -  {e}^{ - x}  )^{2} }

 =  \dfrac{  2  \left\{({e}^{x}) ^{2}   +   ({e}^{ - x} )^{2}   \right\}     }{ 4 \cdot{e}^{x}  \cdot   {e}^{ - x} }  \\

 =  \dfrac{  {e}^{2x}  +   {e}^{ - 2x}        }{ 2 \cdot{e}^{x}  \cdot   {e}^{ - x} }  \\

 =  \dfrac{  {e}^{2x}  +   {e}^{ - 2x}        }{ 2 }  \\

 =   \cosh(2x)  \\

Similar questions