Prove that cos inverse 4/5 +cos inverse 12/13=cos inverse 33/65
Answers
Answered by
0
LHS = cos−1(45) + cos−1(1213)
−1[45×1213 − 1 − (45)2‾‾‾‾‾‾‾‾‾‾√ . 1 − (1213)2‾‾‾‾‾‾‾‾‾‾‾√] =cos−1[4865 − 1 − 1625‾‾‾‾‾‾‾‾√ . 1 − 144169‾‾‾‾‾‾‾‾√]=cos−1[4865 − 35×513]=cos−1[4865 − 1565]=cos−1[3365]=RHS
−1[45×1213 − 1 − (45)2‾‾‾‾‾‾‾‾‾‾√ . 1 − (1213)2‾‾‾‾‾‾‾‾‾‾‾√] =cos−1[4865 − 1 − 1625‾‾‾‾‾‾‾‾√ . 1 − 144169‾‾‾‾‾‾‾‾√]=cos−1[4865 − 35×513]=cos−1[4865 − 1565]=cos−1[3365]=RHS
Similar questions
Math,
7 months ago
Math,
7 months ago
Computer Science,
7 months ago
Math,
1 year ago
Sociology,
1 year ago
Science,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago