Math, asked by ArafatSadit, 2 months ago

prove that, cos nA.cos(n+2)A-cos^(2)(n+1)A+sin^(2)A=0​

Answers

Answered by mathdude500
5

\large\underline{\bold{Given \:Question - }}

Prove that

\rm :\longmapsto\:cosnA \: cos(n + 2)A -  {cos}^{2}(n + 1)A +  {sin}^{2}A = 0

\large\underline{\bf{Solution-}}

Consider LHS,

\rm :\longmapsto\:cosnA \: cos(n + 2)A -  {cos}^{2}(n + 1)A +  {sin}^{2}A

can be rewritten as

\rm  = cosnA \: cos(n + 2)A - \bigg( {cos}^{2}(n + 1)A -  {sin}^{2}A  \bigg)  -  - (1)

Let we simplify first,

 \red{\rm :\longmapsto\:\:  {cos}^{2}(n + 1)A -  {sin}^{2}A  }

\rm \:  =  \:  {cos}^{2}(nA+ A)-  {sin}^{2}A

We know that,

\boxed{ \bf{ \:  {cos}^{2}x -  {sin}^{2}y = cos(x + y)cos(x - y)}}

So, using this identity, we get

\rm \:  =  \:  \:cos(nA + A + A) \: cos(nA + A - A)

\rm \:  =  \:  \:cos(nA + 2A) \: cos(nA)

 \red{\rm \:  =  \:  \:cos(n+ 2)A \: cos(nA)}

So, equation (1) we have

\rm  = cosnA \: cos(n + 2)A - \bigg( {cos}^{2}(n + 1)A -  {sin}^{2}A  \bigg)

On substituting the value, evaluated above, we get

\rm  = cosnA \: cos(n + 2)A - \red{cos(n + 2)AcosnA}

\rm  = cosnA \: cos(n + 2)A - \red{cosnA \: cos(n + 2)A}

\rm \:  =  \:  \:0

Hence, Proved

Additional Information :-

\boxed{ \bf{ \: cos(x + y) = cosxcosy - sinxsiny}}

\boxed{ \bf{ \: cos(x  -  y) = cosxcosy  +  sinxsiny}}

\boxed{ \bf{ \: sin(x + y) = sinxcosy + sinycosx}}

\boxed{ \bf{ \: sin(x  -  y) = sinxcosy  -  sinycosx}}

\boxed{ \bf{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanxtany}}}

\boxed{ \bf{ \: tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanxtany}}}

\boxed{ \bf{ \:  {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y)}}

Similar questions