Math, asked by minnu1234, 3 months ago

prove that Cos pi by 4 - X into Cos pi by 4 minus y minus sin pi by 4 minus x into sin pi by 4 minus y in is equal to sin x + Y​

Answers

Answered by MaheswariS
7

\textbf{To prove:}

\mathsf{cos\left(\dfrac{\pi}{4}-x\right)\;cos\left(\dfrac{\pi}{4}-y\right)-sin\left(\dfrac{\pi}{4}-x\right)\;sin\left(\dfrac{\pi}{4}-y\right)=sin(x+y)}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{cos\left(\dfrac{\pi}{4}-x\right)\;cos\left(\dfrac{\pi}{4}-y\right)-sin\left(\dfrac{\pi}{4}-x\right)\;sin\left(\dfrac{\pi}{4}-y\right)}

\mathsf{Using,}

\boxed{\mathsf{cos(A+B)=cosA\;cosB-sinA\;sinB}}

\mathsf{=cos\left(\dfrac{\pi}{4}-x+\dfrac{\pi}{4}-y\right)}

\mathsf{=cos\left(\dfrac{\pi}{2}-x-y\right)}

\mathsf{=cos\left(\dfrac{\pi}{2}-(x+y)\right)}

\mathsf{Using}\;\boxed{\mathsf{cos\left(\dfrac{\pi}{2}-\theta\right)=sin\,\theta}}

\mathsf{=sin(x+y)}

\implies\boxed{\mathsf{cos\left(\dfrac{\pi}{4}-x\right)\;cos\left(\dfrac{\pi}{4}-y\right)-sin\left(\dfrac{\pi}{4}-x\right)\;sin\left(\dfrac{\pi}{4}-y\right)=sin(x+y)}}

\textbf{Find more:}

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

Answered by minisaaron
1

Step-by-step explanation:

പ്രിയ രക്ഷിതാക്കളെ, 01/09/2022 ന് ഒന്നാം പാദവാർഷിക പരീക്ഷ അവസാനിക്കുകയാണ്.02.09.2022ന് രാവിലെ കുട്ടികളെ കൂട്ടിക്കൊണ്ട് പോകാവുന്നതാണ്. 12.09.2022 ന് സ്കൂൾ തുറക്കുന്നതാണ്.

Similar questions
Math, 1 month ago