Math, asked by nishanirmal2005, 6 months ago

Prove that cos(pie-x)cos(-x)/sin(pie-x) cos (pie/2+x)​

Answers

Answered by Anonymous
39

To prove:-

\large\sf { \frac{ cos( \pi + x) \ cos(-x)}{ sin ( \pi - x) \ cos \big ( \frac{ \pi}{2} + x \big ) }  = cot^{2} x}

Proof:-

\large\sf { \frac{ cos( \pi + x) \ cos(-x)}{ sin ( \pi - x) \ cos \big ( \frac{ \pi}{2} + x \big ) } }

\large\sf { = \frac{ [ - cos \ x][cos \ x]}{ ( sin \ x) ( - sin \ x)}}

\large\sf { = \frac{ - cos^{2} x}{ - sin^{2} x}}

\large\sf { = cot^{2} x}

Similar questions