Math, asked by keerthanadileep02, 11 months ago

prove that : cos [sin ^-1 3/5 + sin^-1 5/13] = 33/65​

Answers

Answered by rishu6845
10

\bold{To \: prove =  >}\\ cos( \:  {sin}^{ - 1} ( \dfrac{3}{5} ) +  {sin}^{ - 1} ( \dfrac{5}{13} ) \: ) \:  =  \dfrac{33}{65}

\bold{Concept \: used }=  > \\ 1)sin ^{ - 1} x +  {sin}^{ - 1}y =  sin ^{ - 1} (x \sqrt{1 -  {y}^{2} }  + y \sqrt{1 -  {x}^{2} } )

2) \:  {sin}^{ - 1} x =  {cos}^{ - 1}  \sqrt{1 -  {x}^{2} }

\bold{Solution =  > } {sin}^{ - 1}  \dfrac{3}{5}  +  {sin}^{ - 1}  \dfrac{5}{13}

 =  {sin}^{ - 1} ( \dfrac{3}{5}  \sqrt{1 - ( \dfrac{5}{13} } )^{2}  +  \dfrac{5}{13}  \sqrt{1 -  { (\dfrac{3}{5} )}^{2} }

 =  {sin}^{ - 1} ( \dfrac{3}{5}  \sqrt{1 -  \dfrac{25}{169} }  +  \dfrac{5}{13}  \sqrt{1 -  \dfrac{9}{25} } )

 =  {sin}^{ - 1} ( \dfrac{3}{5}  \sqrt{ \dfrac{169 - 25}{169} }  +  \dfrac{5}{13}  \sqrt{ \dfrac{25 - 9}{25} } )

 =  {sin}^{ - 1} ( \dfrac{3}{5}  \:  \dfrac{12}{13}  +  \dfrac{5}{13}  \:  \dfrac{4}{5} )

 =  {sin}^{ - 1} ( \dfrac{36}{65}  \:  +  \dfrac{20}{65} )

 =  {sin}^{ - 1}  \dfrac{36 + 20}{65}

 =  {sin}^{ - 1} ( \dfrac{56}{65} )

 =  {cos}^{ - 1}  \sqrt{1 -  { (\dfrac{56}{65} )}^{2} }

 =  {cos}^{ - 1}  \sqrt{1 -  \dfrac{3136}{4225} }

 =  {cos}^{ - 1}  \sqrt{ \dfrac{4225 - 3136}{4225} }

 = {cos}^{ - 1}  \sqrt{ \dfrac{1089}{4225} }

  {sin}^{ - 1} ( \dfrac{3}{5} ) +  {sin}^{ - 1} ( \dfrac{5}{13} ) =  {cos}^{ - 1} ( \dfrac{33}{65} )

 taking \: cos \: both \: sides \: we \: get

 =  > cos \: ( {sin}^{ - 1}  \dfrac{3}{5}  +  {sin}^{ - 1}  \dfrac{5}{13} ) = cos \:  {cos}^{ - 1} ( \dfrac{33}{65} )

 =  >cos( {sin}^{ - 1}  \dfrac{3}{5}  +  {sin}^{ - 1}  \dfrac{5}{13} ) =  \dfrac{33}{65}

Answered by Anonymous
6

answer in the attachment.......

Attachments:
Similar questions