Math, asked by nazimabegum2679, 5 months ago

prove that cos sq a/2+cos sq b/2+cos sq c/2=2+2sin a/2+sin b/2+ sin c/2​

Answers

Answered by Anonymous
0

LHS

=(sinA+cosecA)  

2

+(cosA+secA)  

2

 

=sin  

2

A+cosec  

2

A+2sinA.cosec A+cos  

2

A+sec  

2

A+2cosA.secA

=sin  

2

A+cos  

2

A+2+2+cosec  

2

A+sec  

2

A

=5+(1+cot  

2

A)+(1+tan  

2

A)   ........   [sin²θ+cos²θ=1], [sec  

2

θ=1+tan  

2

θ] and [cosec  

2

x=1+cot  

2

x]  

=7+tan  

2

A+cot  

2

A

= RHS

Hence, proved that  

(sinA+cosec A)  

2

+(cosA+secA)  

2

 =7+tan  

2

A+cot  

2

A

~~~NEW FOLLOWERS WANTED!!~~~

Answered by amanshaw58
0

Answer:

this is your Answer hope it helps you

Step-by-step explanation:

Given u=

a

2

cos

2

θ+b

2

sin

2

θ

+

a

2

sin

2

θ+b

2

cos

2

θ

∴u

2

=(a

2

+b

2

)cos

2

θ+(a

2

+b

2

)sin

2

θ+2

a

2

cos

2

θ+b

2

sin

2

θ

a

2

sin

2

θ+b

2

cos

2

θ

u

2

=a

2

+b

2

+2

a

4

cos

2

θsin

2

θ+b

4

cos

2

θsin

2

θ+a

2

b

2

(cos

4

θ+sin

4

θ)

=a

2

+b

2

+2

(a

4

+b

4

)cos

2

θsin

2

θ+a

2

b

2

(1−2cos

2

θsin

2

θ)

u

2

=a

2

+b

2

+2

4

a

4

+b

4

(sin2θ)

2

+a

2

b

2

(1−

2

sin

2

)

u

2

=a

2

+b

2

+2

4

(a

2

−b

2

)

2

(sin2θ)

2

+a

2

b

2

For max. value of u

2

, sin

2

2θ=1

u

2

=a

2

+b

2

+2

2

(a

2

+b

2

)

2

=2(a

2

+b

2

)

And for min. u

2

,sin2θ=0

u

2

=a

2

+b

2

+2ab=(a+b)

2

∴ Difference between max. and min. value of u

2

is 2(a

2

+b

2

)−(a+b)

2

=(a−b)

2

.

Similar questions