Prove that cos square A - sin square A equal to 1-2 sin square A
Answers
Answered by
3
Step-by-step explanation:
cos²A-sin²A=1-2sin²A
LHS=cos²A-sin²A
=1-sin²A-sin²A(cos²A=1-sin²A)
=1-2sin²A
=RHS(proved)
Answered by
1
tep-by-step explanation:
Consider the provided information.
\sin^2A\cos^2B-\cos^2A\sin^2B=\sin^2A-\sin^2B
Consider the LHS.
\sin^2A\cos^2B-\cos^2A\sin^2B
\sin^2A(1-\sin^2B)-(1-\sin^2A)\sin^2B (∴\cos^2x=1-\sin^2x)
\sin^2A-\sin^2A\sin^2B-\sin^2B+\sin^2A\sin^2B
\sin^2A-\sin^2B
Hence, proved.
Step-by-step explanation:
Similar questions