Math, asked by daniyaltoqeer79, 11 months ago

prove that cos square theta (1 + tan square theta) + sin square theta (1 + cot square theta) =2

Answers

Answered by aman3813
2

Answer:

Please Mark As Brainliest...

Attachments:
Answered by Anonymous
31

Question:

Prove that:

cos²θ (1 + tan²θ) + sin²θ (1 + cot²θ) =2

Answer:

RHS:

 =  >   { \cos }^{2}  \theta(1 + { \tan}^{2}  \theta) + { \sin }^{2}  \theta(1 + { \cot }^{2}  \theta)  \\  \\  =  > { \cos }^{2}  \theta(1 +  \frac{{ \sin}^{2}  \theta}{{ \cos }^{2}  \theta} ) + { \sin }^{2}  \theta(1 +  \frac{{ \cos }^{2}  \theta}{{ \sin }^{2}  \theta} ) \\  \\  =  >({ \cos }^{2}  \theta +  { \cos }^{2}  \theta \times \frac{{ \sin}^{2}  \theta}{{ \cos }^{2}  \theta} ) + ({ \sin }^{2}  \theta +  { \sin}^{2}  \theta \times \frac{{ \cos}^{2}  \theta}{{ \sin }^{2}  \theta} )  \\  \\   =  > ( { \cos}^{2}  \theta + { \sin}^{2}  \theta) + ({ \sin}^{2}  \theta + { \cos}^{2}  \theta) \\  \\  =  > 1 + 1 \\  \\  =  > 1

LHS:

=> 2

LHS = RHS

Hence proved

Similar questions