prove that cos square theta + tan square theta minus one upon sin square theta is equals to tan square theta
Answers
Answered by
41
COS²Q+TAN²Q-1 / SIN²Q = TAN²Q
L.H.S
==> COS²Q+TAN²Q-1 / SIN²Q
PUTTING FORMULA OF COS²Q+SIN²Q = 1 IN 1
==> COS²Q+TAN²Q-(SIN²Q+COS²Q) / SIN²Q
==> COS²Q + TAN²Q - SIN²Q - COS²Q ÷ SIN²Q
==> TAN²Q - SIN²Q ÷ SIN²Q
==> SIN²Q/COS²Q - SIN²Q ÷ SIN²Q
==> SIN²Q-SIN²Q*COS²Q / COS²Q ÷ SIN²Q
==> SIN²Q(1-COS²Q)/COS²Q ÷ SIN²Q
==> SIN²Q(1-COS²Q)×1/COS²Q × 1/SIN²Q
==> (1-COS²Q)× 1/COS²Q
==> SIN²Q × 1/COS²Q
==> SIN²Q/COS²Q
==> TAN²Q
SO, TAN²Q == R.H.S
HENCE PROVED
I HOPE ITS HELPFUL
Answered by
22
Step-by-step explanation:
your answer is an attachment.
Attachments:
Similar questions