prove that, cos α - tan α = 2cot 2α
Answers
Answered by
0
Answer:
cotA-tanA = 2.cot 2A
L.H.S.
=cosA/sinA-sina/cosA
=(cos^2A-sin^2A)/sinA.cosA
=(cos2A)/(1/2.sin2A)
=2.(cos2A/sin2A)
=2.cot2A , Proved.
Answered by
0
Step-by-step explanation:
cotA-tanA = 2.cot 2A
L.H.S.
=cosA/sinA-sina/cosA
=(cos^2A-sin^2A)/sinA.cosA
=(cos2A)/(1/2.sin2A)
=2.(cos2A/sin2A)
=2.cot2A , Proved.
Similar questions