Math, asked by ROMIT2432, 1 year ago

Prove that: cos 4x=1-8sin^{2} x cos^{2}x

Answers

Answered by NidhraNair
27
hello ☺

cos4x as cos2(2x)
=1-2sin2(2x)

 =1-2(2sinx . cosx)2                         
{ sin2x = 2sinx. cosx}

 =1-2(4sin2x.cos2x)

 =1-8sin2x.cos2x

LHS=RHS

⏺⏺⏺⏺⏺⏺or ⏺⏺⏺⏺⏺⏺

cos4x = cos2(2x)

2cos^2(2x) - 1

2(cos2x)^2 -1 

2[(2cosx -1 )]^2 -1

2[(4cos^2(x)+1-4cox)] -1

8cos^2(x) - 8cosx +1
 

janmayjaisolanki78: Sorry for disturbing u
janmayjaisolanki78: And i m not having bad intentions
NidhraNair: it's OK :)
janmayjaisolanki78: And i m not a bad bro
NidhraNair: ;)
janmayjaisolanki78: BTW can v b frnds here di
janmayjaisolanki78: Please
janmayjaisolanki78: Not gonna disturb u
janmayjaisolanki78: Sorry
arushrma: asp to intelligent ho handwriting samjam me nahi araha h
Similar questions