Prove that: cos
Answers
Answered by
27
hello ☺
cos4x as cos2(2x)
=1-2sin2(2x)
=1-2(2sinx . cosx)2
{ sin2x = 2sinx. cosx}
=1-2(4sin2x.cos2x)
=1-8sin2x.cos2x
LHS=RHS
⏺⏺⏺⏺⏺⏺or ⏺⏺⏺⏺⏺⏺
cos4x = cos2(2x)
2cos^2(2x) - 1
2(cos2x)^2 -1
2[(2cosx -1 )]^2 -1
2[(4cos^2(x)+1-4cox)] -1
8cos^2(x) - 8cosx +1
cos4x as cos2(2x)
=1-2sin2(2x)
=1-2(2sinx . cosx)2
{ sin2x = 2sinx. cosx}
=1-2(4sin2x.cos2x)
=1-8sin2x.cos2x
LHS=RHS
⏺⏺⏺⏺⏺⏺or ⏺⏺⏺⏺⏺⏺
cos4x = cos2(2x)
2cos^2(2x) - 1
2(cos2x)^2 -1
2[(2cosx -1 )]^2 -1
2[(4cos^2(x)+1-4cox)] -1
8cos^2(x) - 8cosx +1
janmayjaisolanki78:
Sorry for disturbing u
Similar questions