Math, asked by pro5871maths, 8 months ago

prove that cos (therta) /1-tan(therta)+sin(therta)1-cot(therta)=(cos(therta)+sin(therta)​

Answers

Answered by Anonymous
8

Question

 \frac{ \cos(x) }{1 -  \tan(x) }  +  \frac{ \sin(x) }{1  -   \cot(x) }  =  \cos(x)  +  \sin(x)

Solution :

\frac{ \cos(x) }{1 -  \tan(x) }  +  \frac{ \sin(x) }{1  -   \cot(x) }  =  \cos(x)  +  \sin(x)

LHS :

 \frac{ \cos(x) }{1 -  \tan(x) }  +  \frac{ \sin(x) }{1 -  \cot(x) }

convert tanx and cotx in terms of sinx and cosx

 =  \frac{ \cos(x) }{1 -  \frac{ \sin(x) }{ \cos(x) } }  +  \frac{ \sin(x) }{1 -  \frac{ \cos(x) }{ \sin(x) } }

 =  \frac{ \cos(x)  }{  \frac{ \cos(x)  -  \sin(x) }{ \cos(x) } }  +  \frac{ \sin(x) }{ \frac{  \sin(x) -   \cos(x)  }{ \sin(x) } }

 =  \frac{ \cos {}^{2} (x) }{    \cos(x)  -  \sin(x) }   -   \frac{ \sin {}^{2} (x) }{  \cos(x) -  \sin(x)  }

 =  \frac{ \cos {}^{2} (x) -  \sin {}^{2} (x)  }{   \cos(x) -  \sin(x)   }

use formula

a²- b² = (a+b) (a-b)

 =  \frac{( \cos(x) +  \sin(x))( \cos(x)   -  \sin(x)  )}{ \cos(x) -  \sin(x)  }

 =  \cos(x)  +  \sin(x)

\huge{\bold{ Hence \: Proved }}

Answered by Anonymous
4

{\underline{\underline{\huge{\mathbb{QUESTION:-}}}}}

Prove that,

{\bold{\frac{cos\theta}{1-tan\theta}+\frac{sin\theta}{1-cot\theta}=cos\theta+sin\theta}}

{\underline{\underline{\huge{\mathbb{SOLUTION:-}}}}}

† Taking L.H.S †

{\blue{\bold{\frac{cos\theta}{1-tan\theta}+\frac{sin\theta}{1-cot\theta}}}}

★We know {\bold{\tan\theta=\frac{sin\theta}{cos\theta}}} and {\bold{\cot\theta=\frac{cos\theta}{sin\theta}}}

{\bold{→\frac{cos\theta}{1-\frac{sin\theta}{cos\theta}}}+\frac{sin\theta}{1-\frac{cos\theta}{sin\theta}}}

{\bold{→\frac{cos\theta}{\frac{cos\theta-sin\theta}{cos\theta}}}}+{\bold{\frac{sin\theta}{\frac{sin\theta-cos\theta}{sin\theta}}}}

{\bold{→cos\theta×\frac{cos\theta}{cos\theta-sin\theta}+sin\theta×\frac{sin\theta}{sin\theta-cos\theta}}}

{\bold{→\frac{cos^2\theta}{cos\theta-sin\theta}+\frac{sin^2\theta}{sin\theta-cos\theta}}}

{\bold{→\frac{cos^2\theta}{cos\theta-sin\theta}-\frac{sin^2\theta}{cos\theta-sin\theta}}}

{\bold{→\frac{cos^2\theta-sin^2\theta}{cos\theta-sin\theta}}}

Apply a²-b²=(a+b)(a-b)

{\bold{→\frac{(cos\theta+sin\theta)(cos\theta-sin\theta)}{cos\theta-sin\theta}}}

{\red{\bold{→cos\theta+sin\theta}}}

L.H.S = R.H.S

Hence proved________!!

Similar questions