Math, asked by suyash14780, 9 months ago

prove that cos theta/1-sin theta = 1+ sin theta/ cos theta​

Answers

Answered by priyamala12
1

Answer:

 \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }  =  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) }  \\ ls =  \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }. \frac{1 -  \sin( \alpha ) }{1 -  \sin( \alpha )}  \\  =  \frac{ \cos( \alpha ) (1 -  \sin( \alpha ))}{1 -  { \sin }^{2}( \alpha ) }  \\   = \frac{ \cos( \alpha)(1 -  \sin( \alpha )  }{ { \cos}^{2} (\alpha ) }  \\   = \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) }

let \: theta \: be \:  =  \alpha

Similar questions