Math, asked by ayushumraoau, 1 year ago

prove that = cos theta/1-tan theta+sin theta/1-cot theta = sin theta + cos theta​

Attachments:

Answers

Answered by sivaprasath
4

(Instead of θ, I use A)

Answer:

Step-by-step explanation:

Given :

To prove :

\frac{cosA}{1-tanA} +\frac{sinA}{1-cotA} = sinA+cosA

Solution :

We know that,

tanA = \frac{sinA}{cosA} ,cotA=\frac{cosA}{sinA}

a² - b² = (a + b) (a - b)

Proof :

LHS = \frac{cosA}{1-tanA} +\frac{sinA}{1-cotA}

\frac{cosA}{1-\frac{sinA}{cosA} } +\frac{sinA}{1-\frac{cosA}{sinA} }

\frac{cosA}{\frac{cosA-sinA}{cosA} } +\frac{sinA}{\frac{sinA-cosA}{sinA} }

\frac{cos^2A}{-(sinA-cosA) } +\frac{sin^2A}{sinA-cosA }

-\frac{cos^2A}{sinA-cosA} +\frac{sin^2A}{sinA-cosA}

\frac{sin^2A-cos^2A}{sinA - cosA} = \frac{(sinA+cosA)(sinA-cosA)}{sinA-cosA} = sinA+cosA=RHS

Hence, proved


sivaprasath: Mark as Br...
Answered by UltimateMasTerMind
9

Solution:-

To Proof:-

⇒  \frac{ \cos(θ) }{1 -  \tan(θ) }   +  \frac{  \sin(θ) }{1 -  \cot(θ) }  =  \sin(θ)  +  \cos(θ)

Proof:-

L.H.S.

⇒  \frac{ \cos(θ) }{1 -  \tan(θ) }   +  \frac{  \sin(θ) }{1 -  \cot(θ) }  \\  \\ ⇒ \frac{ \cos(θ) }{1 -  \frac{ \sin(θ) }{ \cos(θ) } }  +  \frac{ \sin(θ) }{1 -  \frac{ \cos(θ) }{ \sin(θ) } }  \\  \\ ⇒ \:  \frac{ \cos(θ) }{ \frac{ \cos(θ)  -  \sin(θ) }{ \cos(θ) } }  +  \frac{ \sin(θ) }{ \frac{ \sin(θ) -  \cos(θ)  }{ \sin(θ) } }  \\  \\ ⇒ \frac{ { \cos(θ) }^{2} }{ \cos(θ) -  \sin(θ)  }  +  \frac{ { \sin(θ) }^{2} }{ \sin(θ ) -  \cos(θ)  }  \\  \\ ⇒\frac{ { \cos(θ) }^{2} }{ \cos(θ) -  \sin(θ)  }   -   \frac{ { \sin(θ) }^{2} }{ \cos(θ)  -  \sin(θ) }  \\  \\ ⇒ \frac{ { \cos(θ) }^{2}  -  { \sin(θ) }^{2} }{ \cos(θ)  -  \sin(θ) }  \\  \\ ⇒ \:  \frac{( \cos(θ) -  \sin(θ) )( \cos(θ)  +  \sin(θ))  }{ \cos(θ) -  \sin(θ)  }  \\  \\ ⇒ \:  \cos(θ)  +  \sin(θ)

⇒ L.H.S. = R.H.S.

Hence Proved!

Identity Used:-

  • ( cos²θ - sin²θ) = [ ( cosθ + sinθ)(cosθ -
Similar questions