prove that cos theta +
(2π/3+theta) + cos (4π/3+theta) = 0
Answers
Answered by
0
Answer:
0
Step-by-step explanation:
Let xcosθ=ycosθ+2π3=zcosθ+4π3=k
Now,
kx=cosθ.....1
ky=cosθ+2π3......2
kz=cosθ+4π3......3
By adding 1,2,and3 we get
kx+ky+kz=cosθ+cosθ+2π3+cosθ+4π3
⇒k1x+1y+1z=cosθ+cosθ+2π3+cosθ+4π3
=2cos2θ+4π32cos-4π32+cosθ+2π3[∵cosA+cosB=2cosA+B2cosA-B2]
=-2cosθ+2π3cos2π3+cosθ+2π3
=-2×12cosθ+2π3+cosθ+2π3bycos2π3=12
=0
Similar questions