Math, asked by mu6381706, 16 days ago

Prove that cos theta -2cos^3 theta / 2 sin ^3 theta - sin theta = cot theta
class 10​

Answers

Answered by krishpmlak
1

Answer:

Step-by-step explanation:

L.H.S. = ( cos θ - 2cos³ θ ) / ( 2sin³ θ - sin θ )

= cos θ ( 1 - 2 cos² θ ) / sin θ ( 2sin² θ - 1 )

= ( cos θ ) [ - ( 2 cos² θ - 1 ) ] / ( sin θ ) [ - ( 1 - 2 sin² θ ) ]

= ( cos θ / sin θ ) ( - cos 2θ / - cos 2θ ) [∵cos 2θ = 2 cos² θ - 1 and 1- 2 sin² θ]

= cot θ

= R.H.S.

∴L.H.S. = R.H.S.

Hence, it is proved.

Similar questions