prove that :- cos theta by 1-sin theta = 1 + sin theta by cos theta
Answers
Answered by
0
Answer:
» cosØ / (1 - sinØ) = (1 + sinØ) / cosØ
» cos²Ø = 1 - sin²Ø
» sin²Ø + cos²Ø = 1
It's an identity.
Therefore given expression is correct.
Answered by
2
Answer:
Consider the LHS.
⇒
sinθ+cosθ−1
sinθ−cosθ+1
Divide numerator and denominator with cosθ.
⇒
cosθ
sinθ
+
cosθ
cosθ
−
cosθ
1
cosθ
sinθ
−
cosθ
cosθ
+
cosθ
1
⇒
tanθ+1−secθ
tanθ−1+secθ
⇒
tanθ−secθ+1
tanθ+secθ−1
Put sec
2
θ−tan
2
θ=1 in the numerator.
⇒
tanθ−secθ+1
(tanθ+secθ)−(sec
2
θ−tan
2
θ)
⇒
tanθ−secθ+1
(secθ+tanθ)[1−secθ+tanθ]
⇒secθ+tanθ
Multiply and divide the above result with (secθ−tanθ).
⇒secθ+tanθ
⇒
cosθ
1
+
cosθ
sinθ
⇒
cosθ
1+sinθ
Hence, LHS=RHS.
Similar questions