Math, asked by kattinakulamuralikri, 20 days ago

Prove that cos theta + cos((2pi)/3 + theta ) + cos((4pi)/3 + theta ) = 0

Answers

Answered by XxitzMichAditixX
11

\huge\mathtt\pink{♡Answer♡}

a=cosx+cos(x+

3

)+cos(x+

3

)

a=cosx+2cos

2

x+

3

+x+

3

cos

2

x+

3

−x−

3

a=cosx+2cos

2

2x+

3

cos

2

3

−2π

a=cosx+2cos(π+x)cos

3

π

a=cosx−2cosxcos

3

π

a=cosx−2cosx×

2

1

a=cosx−cosx=0

∴a=0

b=sinx+sin(x+

3

)+sin(x+

3

)

b=sinx+2sin

2

x+

3

+x+

3

cos

2

x+

3

−x−

3

b=sinx+2sin

2

2x+

3

cos

2

3

−2π

b=sinx+2sin(π+x)cos

3

π

b=sinx−2sinxcos

3

π

b=sinx−2sinx×

2

1

b=sinx−sinx=0

∴b=0

Hence a+b=0 [Proved].

hope it helps ✅✅✅

plss make me as brainliest.

#MichAditi✨✌️

Answered by xXNIHASRAJGONEXx
0

Answer:

please refer to the attached

please drop some ❤️❤️❤️

Step-by-step explanation:

please f-o-l-l-o-w m-e bro

Attachments:
Similar questions