prove that cos theta × cos theta/2 - cos 3 theta × cos 9 theta/2 = sin 7 theta × sin 8 theta
Answers
Answered by
2
Answer:
Answer Text
Solution :
LHS = cosθcosθ2−cos3θcos9θ2
=12[2cosθ⋅cosθ2−2cos3θ⋅cos9θ2]
=12[cos(θ+θ2)+cos(θ−θ2)−cos(3θ+9θ2)−cos(3θ−9θ2)]
12(cos3θ2+cosθ2−cos15θ2−cos3θ2
=12[cosθ2−cos15θ2]
=−12[2sin(θ+15θ2)⋅sin(θ−15θ2)] [∵cosx−cosy=−2sinx+y2⋅sinx−y2]
=+(sin8θ⋅sin7θ)=RHS
∴ LHS=RHS Hence proved.
Step-by-step explanation:
mark me as briliant
Similar questions