Prove that cos theta.cos theta/2-cos 3 theta.cos9 theta/2= sin 7 theta.sin 8 theta
Answers
Answered by
7
Step-by-step explanation:
Text Solution
Solution :
LHS = cosθcosθ2−cos3θcos9θ2
=12[2cosθ⋅cosθ2−2cos3θ⋅cos9θ2]
=12[cos(θ+θ2)+cos(θ−θ2)−cos(3θ+9θ2)−cos(3θ−9θ2)]
12(cos3θ2+cosθ2−cos15θ2−cos3θ2
=12[cosθ2−cos15θ2]
=−12[2sin(θ+15θ2)⋅sin(θ−15θ2)] [∵cosx−cosy=−2sinx+y2⋅sinx−y2]
=+(sin8θ⋅sin7θ)=RHS
∴ LHS=RHS Hence proved.
Answered by
0
Answer:
➩x×0.74=5.92
➩x=0.745.92
➩x=8
Answer:otherno.=8
Similar questions
Chemistry,
4 months ago
English,
4 months ago
Math,
4 months ago
Social Sciences,
8 months ago
Social Sciences,
1 year ago
Math,
1 year ago