Math, asked by jaysheelsk, 1 year ago

prove that cos theta divided by 1 minus tan theta + sin theta divided by 1 minus cot theta is equals to sin theta + cos theta​

Answers

Answered by SanjeevKumarmeena
20

If you got satisfaction from my answer, please mark as brainlist.

byye

Attachments:
Answered by FelisFelis
11

\dfrac{\cos\theta}{1-\tan\theta}+\dfrac{\sin\theta}{1-\cot\theta} =\sin\theta+\cos\theta Proved.

Step-by-step explanation:

Consider the provided expression.

\dfrac{\cos\theta}{1-\tan\theta}+\dfrac{\sin\theta}{1-\cot\theta} =\sin\theta+\cos\theta

Consider the LHS

\dfrac{\cos\theta}{1-\tan\theta}+\dfrac{\sin\theta}{1-\cot\theta}

=\dfrac{\cos\theta}{1-\frac{\sin\theta}{\cos\theta}}+\dfrac{\sin\theta}{1-\frac{\cos\theta}{\sin\theta}}

=\dfrac{\cos^2\theta}{\cos\theta-\sin\theta}+\dfrac{\sin^2\theta}{\sin\theta-\cos\theta}

=\dfrac{\cos^2\theta}{\cos\theta-\sin\theta}-\dfrac{\sin^2\theta}{\cos\theta-\sin\theta}

=\dfrac{\cos^2\theta-\sin^2\theta}{\cos\theta-\sin\theta}

=\dfrac{(\cos\theta+\sin\theta)(\cos\theta-\sin\theta)}{\cos\theta-\sin\theta}

=\cos\theta+\sin\theta

LHS=RHS

Hence, proved

#Learn more

Prove that Sin10°+Sin20°+Sin40°+Sin50°=Sin70°+Sin80°

brainly.in/question/1370752

Similar questions