Math, asked by nikvik13161, 1 month ago

Prove that cos theta divided by one plus sin theta minus one minus sin theta dived by cos theta equals 0

Answers

Answered by MysticSohamS
0

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

so \: here \\ (cos \: theta \div 1 + sin \: theta) - (1 + sin \: theta \div cos \: theta) = 0

let \: lhs = (cos \: theta \div 1 + sin \: theta) - (1 - sin \: theta \div cos) \\ rhs = 0

considering \: lhs \: first \\  = cos \: theta \div 1 + sin \: theta - 1 - sin \: theta \div cos \: theta \\  = cos \: theta.cos \: theta  -  (1 - sin \: theta)(1 + sin \: theta) \div (1 + sin \: theta).cos \: theta

 = cos \: square \: theta - (1 - sin \: square \: theta) \div (1 + sin \: theta).cos \: theta \\  = cos \: square - cos \: square \: theta \div (1 + sin \: theta).cos \: theta

 = 0 \div (1 + sin \: theta).cos \: theta \\  = 0

thus \: lhs = rhs \\ hence \: proved

Similar questions