Prove that cos theta is equal to two cos squre theta minus one hota hai
Answers
Answered by
0
Step-by-step explanation:
We have,
\cos^2 \theta=2\cos^2 \theta-1cos
2
θ=2cos
2
θ−1
To find, the value of \thetaθ = ?
∴ \cos^2 \theta=2\cos^2 \theta-1cos
2
θ=2cos
2
θ−1
⇒ 2\cos^2 \theta-\cos^2 \theta-1=02cos
2
θ−cos
2
θ−1=0
⇒ \cos^2 \theta-1=0cos
2
θ−1=0
⇒ \cos^2 \theta=1cos
2
θ=1
⇒\cos \thetacosθ = ± 1
⇒ \cos \thetacosθ = 1 or, \cos \thetacosθ = - 1
We know that,
\cos 0cos0 = 1 and \cos 180cos180 = - 1
∴ \cos \thetacosθ = 1
⇒ \cos \thetacosθ = \cos 0cos0
⇒ \thetaθ = 0°
Also,
\cos \thetacosθ = - 1
⇒ \cos \thetacosθ = \cos 180cos180
⇒ \thetaθ = 180°
Thus, \thetaθ = 0° or, 180°
Similar questions
Math,
6 hours ago
Science,
6 hours ago
Hindi,
12 hours ago
Political Science,
8 months ago
Hindi,
8 months ago