prove that cos theta minus sin theta + 1 by cos theta + sin theta minus 1 equal to cosec theta + cot theta
Answers
Answered by
3
Answer:
proof given below:
Explanation:
Taking conjugate of the denominator
1−cosΘ1+cosΘ=1−cosΘ1+cosΘ⋅1−cosΘ1−cosΘ
=(1−cosΘ)212−cos2Θ
We have sin2Θ+cos2Θ=1
so sin2Θ=1−cos2Θ
=(1−cosΘ)2sin2Θ
=(1−cosΘsinΘ)2
Seperating the fractions
=(1sinΘ−cosΘsinΘ)2
=(cscΘ−cotΘ)2
proof given below:
Explanation:
Taking conjugate of the denominator
1−cosΘ1+cosΘ=1−cosΘ1+cosΘ⋅1−cosΘ1−cosΘ
=(1−cosΘ)212−cos2Θ
We have sin2Θ+cos2Θ=1
so sin2Θ=1−cos2Θ
=(1−cosΘ)2sin2Θ
=(1−cosΘsinΘ)2
Seperating the fractions
=(1sinΘ−cosΘsinΘ)2
=(cscΘ−cotΘ)2
Anurag7798:
thanks
Answered by
1
your answer for above question
Attachments:
Similar questions
English,
7 months ago
Physics,
7 months ago
Math,
1 year ago
CBSE BOARD X,
1 year ago
Math,
1 year ago