Math, asked by shrutijaiswal9639, 1 year ago

prove that cos theta over 1 - tan theta +sin theta over 1 - cot theta is equal to sin theta + cos theta​

Attachments:

Answers

Answered by Grimmjow
18

\mathsf{Given :\;\dfrac{cos\theta}{1 - tan\theta} + \dfrac{sin\theta}{1 - cot\theta}}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{cot\theta = \dfrac{cos\theta}{sin\theta}}}}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{tan\theta = \dfrac{sin\theta}{cos\theta}}}}

\mathsf{\implies \dfrac{cos\theta}{1 - \dfrac{sin\theta}{cos\theta}} + \dfrac{sin\theta}{1 - \dfrac{cos\theta}{sin\theta}}}

\mathsf{\implies \dfrac{cos\theta}{\dfrac{cos\theta - sin\theta}{cos\theta}} + \dfrac{sin\theta}{\dfrac{sin\theta - cos\theta}{sin\theta}}}

\mathsf{\implies \dfrac{cos^2\theta}{cos\theta - sin\theta} + \dfrac{sin^2\theta}{sin\theta - cos\theta}}

\mathsf{\implies \dfrac{cos^2\theta}{cos\theta - sin\theta} + \dfrac{sin^2\theta}{-(cos\theta - sin\theta)}}

\mathsf{\implies \dfrac{cos^2\theta}{cos\theta - sin\theta} - \dfrac{sin^2\theta}{cos\theta - sin\theta}}

\mathsf{\implies \dfrac{cos^2\theta - sin^2\theta}{cos\theta - sin\theta}}

★  We know that : (A + B)(A - B) = A² - B²

\mathsf{\implies \dfrac{(cos\theta - sin\theta)(cos\theta + sin\theta)}{cos\theta - sin\theta}}

\implies \large\boxed{\mathsf{cos\theta + sin\theta}}


shrutijaiswal9639: thank u so much
Grimmjow: Glad it helped! ^^''
shrutijaiswal9639: yaa it helped me a lot
shrutijaiswal9639: can u answer other questions
Grimmjow: Let me give them a Try! ^^''
shrutijaiswal9639: yaa sure plssssss
Similar questions