prove that cos theta - sign theta / cos theta + sign theta - 1
Answers
Answer:
→ Hey Mate,
→ Given Question: prove that =
→ Step-by-step explanation:
→ Solution : -
→ ⇒ Divide Nr and Dr by sin theta
→ ⇒ - +
→ ------------------------------------------- ( Divided By )
→ ⇒ + -
→ ⇒
→ ⇒ --------------------------------- ( Divided By )
→ ⇒
→ ⇒ [ ∵Formula used: ]
→ ⇒
→ ⇒
→ ⇒
→ ⇒
→ ⇒ is the solution.
Question :- prove that (cosA-sinA+1) / (cos A+sinA-1) = (cosecA+cotA)
Formula used :-
- CosA/sinA = cotA
- 1/sinA = cosA
- 1 = cosec²A - cot²A
- (a² - b²) = (a+b)(a-b)
Solution :-
→ (cos A- sin A + 1) / (cos A + sin A - 1).
Divide both numerator and the denominator by sinA we get ,,
→ (cosec A + cot A - 1)/(cotA - cosec A +1)
Now, Putting value of 1 = cosec²A - cot²A = (cosecA + cotA)(cosecA - cotA) in Numerator we get,
→ {(cosecA+cotA)-(cosecA+cotA)(cosecA-cotA)} / (cotA - cosec A +1)
Taking (cosecA+cotA) common From Numerator Now, we get,
→ [(cosecA+cotA){1-(cosecA-cotA)}] / (cotA - cosec A +1)
→ (cosecA+cotA)(cotA-cosecA+1) / (cotA - cosec A +1)
(cotA - cosec A +1) will be cancel now
Finally, we get,
→ (cosecA + cotA) { Hence Proved.}
Similar Question :-
Pls prove this question.
brainly.in/question/14417354