Math, asked by mufiahmotors, 23 days ago

prove that cos theta - sign theta / cos theta + sign theta - 1​

Answers

Answered by brainlyanswerer83
19

Answer:

→ Hey Mate,

→ Given Question:  prove that   \frac{costhetha  - sin theta +1}{costheta + sintheta - 1} = cosectheta  + cottheta

→ Step-by-step explanation:

Solution : - \frac{costheta - sintheta  + 1}{costheta + sintheta -1}

→              ⇒ Divide Nr and Dr by sin theta

→              ⇒  \frac{costheta }{sintheta}   -   \frac{sintheta}{sintheta}    + \frac{1}{sintheta}

→                 -------------------------------------------     ( Divided By )

→              ⇒ \frac{costheta}{sintheta}  +    \frac{sintheta}{sin theta}     -  \frac{1}{sintheta}

→              ⇒ cottheta-1 + cosectheta

→              ⇒ ---------------------------------    ( Divided By )

→              ⇒ cottheta + 1 - cosectheta

→              ⇒ [ ∵Formula used: cosecc^2thetha- cot^2theta = 1 ]

→              ⇒ \frac{cosectheta +cottheta - ( cox^2theta - cot^2theta = 1}{(cot theta + 1-cosecthetha) }

→               ⇒ \frac{coxcthetha + cot theta - ( coxcthetha  + cottheta) ( coxcthetha - cottheta)}{(cottheta+1 - cosxctheta)}

→               ⇒  \frac{(coxctheta + cot theta) [ 1 - (coxctheta - cottheta}{  "}

→               ⇒ \frac{(coxctheta + cottheta)(1-coxctheta + cottheta )}{(cottheta +1 - coxctheta)}

→                ⇒ ( coxctheta  + cot theta ) is the solution.

Answered by RvChaudharY50
4

Question :- prove that (cosA-sinA+1) / (cos A+sinA-1) = (cosecA+cotA)

Formula used :-

  • CosA/sinA = cotA
  • 1/sinA = cosA
  • 1 = cosec²A - cot²A
  • (a² - b²) = (a+b)(a-b)

Solution :-

→ (cos A- sin A + 1) / (cos A + sin A - 1).

Divide both numerator and the denominator by sinA we get ,,

→ (cosec A + cot A - 1)/(cotA - cosec A +1)

Now, Putting value of 1 = cosec²A - cot²A = (cosecA + cotA)(cosecA - cotA) in Numerator we get,

→ {(cosecA+cotA)-(cosecA+cotA)(cosecA-cotA)} / (cotA - cosec A +1)

Taking (cosecA+cotA) common From Numerator Now, we get,

→ [(cosecA+cotA){1-(cosecA-cotA)}] / (cotA - cosec A +1)

→ (cosecA+cotA)(cotA-cosecA+1) / (cotA - cosec A +1)

(cotA - cosec A +1) will be cancel now

Finally, we get,

(cosecA + cotA) { Hence Proved.}

Similar Question :-

Pls prove this question.

brainly.in/question/14417354

Similar questions