Math, asked by singhsaurav4400, 11 months ago

Prove that cos theta/sin 2 theta - cos 2 theta/2 sin theta is equal to sin theta

Answers

Answered by Sharad001
105

QuesTion :-

 \bf Prove \:  that  :  \\  \implies \:  \frac{ \cos \theta}{ \sin2 \theta}  -  \frac{ \cos2 \theta}{2 \sin \theta}  =  \sin \theta

Used formulas:-

 \star  \: \boxed{ \lll  \sin2 \theta = 2 \sin \theta \cos \theta \lll} \\  \\  \star \boxed{ \lll \: 1 -  \cos2 \theta = 2 { \sin}^{2 } \theta \:  \lll } \\

Proof :-

Taking Left hand side ,

 \leadsto \: \frac{ \cos \theta}{ \sin2 \theta}  -  \frac{ \cos2 \theta}{2 \sin \theta} \:  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \because \:  \boxed{  \sin2 \theta = 2 \sin \theta \cos \theta }\:  \\ \therefore \\   \leadsto \: \frac{ \cos \theta}{ 2\sin \theta \cos \theta}  -  \frac{ \cos2 \theta}{2 \sin \theta} \\  \\  \leadsto \:  \frac{1}{2 \sin \theta}  -  \frac{ \cos 2 \theta}{2 \sin \theta}  \\  \\  \leadsto \:  \frac{1 -  \cos2 \theta}{2 \sin \theta}  \\  \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \because  \boxed{  2 {  \sin}^{2} \theta = 1 -  \cos2 \theta} \:  \\  \therefore \\  \leadsto \:  \frac{2 { \sin}^{2} \theta }{2 \sin \theta}  \\   \\  \leadsto \:  \sin \theta \:  \\  \\ \:  \:  \:  \:  \:  \boxed{\frac{ \cos \theta}{ \sin2 \theta}  -  \frac{ \cos2 \theta}{2 \sin \theta}  =  \sin \theta \: }  \\  \\  \mathcal{L.H.S = R.H.S  \: } \:  \\  \sf{Hence \:  proved . \: }

Similar questions