prove that cos theta - sin theta / cos theta + sin theta = sec 2 theta - tan2 theta
Answers
Answered by
18
Answer:
(Cosθ - Sinθ)/(Cosθ + Sinθ) = Sec2θ - Tan2θ
Step-by-step explanation:
Prove that cos theta - sin theta / cos theta + sin theta = sec 2 theta - tan2 theta
(Cosθ - Sinθ)/(Cosθ + Sinθ) = Sec2θ - Tan2θ
LHS
= (Cosθ - Sinθ)/(Cosθ + Sinθ)
= (Cosθ - Sinθ)/(Cosθ + Sinθ) * (Cosθ - Sinθ)/(Cosθ - Sinθ)
= (Cos²θ + Sin²θ - 2CosθSinθ) /(Cos²θ - Sin²θ)
= ( 1 - 2CosθSinθ)/(Cos²θ - Sin²θ)
= (1 - Sin2θ)/(cos2θ)
= 1/cos2θ - Sin2θ/cos2θ
= Sec2θ - Tan2θ
= RHS
QED
(Cosθ - Sinθ)/(Cosθ + Sinθ) = Sec2θ - Tan2θ
Answered by
2
Step-by-step explanation:
I hope this helps you
mark as brainliest .as this is the most simple way
Attachments:
Similar questions