Prove that(cos theta – sintheta+1)/(costheta + sintheta+1)= cosectheta + cottheta
Answers
Answered by
0
Answer :-
solving LHS,
→ (cosA - sinA + 1)/(cos A + sinA - 1)
dividing numerator and denominator by sinA
→ (cosA / sinA - sinA/sinA + 1/sinA) / (cosA / sinA + sinA/sinA - 1/sinA)
→ (cot A + cosec A - 1) / (cot A - cosec A + 1)
putting 1 = cosec²A - cot²A in numerator,
→ {cot A + cosec A - (cosec²A - cot²A)} / (cot A - cosec A + 1)
→ using (a² - b²) = (a + b)(a - b)
→ (cotA + cosecA)(1 - cosecA + cotA) / (cot A - cosec A + 1)
→ cotA + cosecA = RHS (proved)
Learn more :-
It sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N
https://brainly.in/question/13926306
tanA/(1-cotA) + cotA/(1-tanA)
https://brainly.in/question/16775946
Similar questions
Social Sciences,
1 month ago
Biology,
1 month ago
English,
1 month ago
Hindi,
2 months ago
Social Sciences,
9 months ago
Computer Science,
9 months ago