Math, asked by abcd6488, 11 months ago

prove that cos theta upon 1 minus 10 theta + sin theta upon 1 minus cot theta is equal to cos theta + sin​

Answers

Answered by MaheswariS
8

\text{consider}

=\displaystyle{\frac{cos\theta}{1-tan\theta}+\frac{sin\theta}{1-cot\theta}

=\displaystyle{\frac{cos^2\theta}{1-\frac{sin\theta}{cos\theta}}+\frac{sin\theta}{1-\frac{cos\theta}{sin\theta}}}

=\displaystyle{\frac{cos^2\theta}{cos\theta-sin\theta}+\frac{sin^2\theta}{sin\theta-cos\theta}}

=\displaystyle{\frac{cos^2\theta}{cos\theta-sin\theta}-\frac{sin^2\theta}{cos\theta-sin\theta}

=\displaystyle{\frac{cos^2\theta-sin^2\theta}{cos\theta-sin\theta}}

\text{Using}

\boxed{\bf\;a^2-b^2=(a-b)(a+b)}

=\displaystyle{\frac{(cos\theta-sin\theta)(cos\theta+sin\theta)}{cos\theta-sin\theta}}

=\displaystyle{cos\theta+sin\theta}

\therefore\boxed{\bf\frac{cos\theta}{1-tan\theta}+\frac{sin\theta}{1-cot\theta}=cos\theta+sin\theta}

Similar questions