Math, asked by aparna2208, 6 months ago

prove that cos to the power 4 A + sin to the power 4 - 2 cos square A into sin square A is equal to 2 cos square A minus 1 whole square​

Answers

Answered by Anonymous
0

Answer:

Proof is given below.

Step-by-step explanation:

cos^{4}A + sin^{4}A - 2cos^{2}A sin^{2}A\\

= (cos^{2}A - sin^{2}A)^{2}          (i)

(using the identity (a-b)^2 = a^2 + b^2 - 2ab)

Now, using the trigonometric identity sin^{2}A + cos^{2}A = 1, we get

sin^{2}A = 1-cos^{2}A          (ii)

Substituting (ii) in (i):

(cos^{2}A - sin^{2}A)^{2} = (cos^2A -(1-cos^2 A))^2 = (2cos^2A - 1)^{2}

Hence proved.

Similar questions