Math, asked by Anonymous, 1 year ago

Prove that : cos x / 1 - sin x = tan ( π / 4 + x / 2 )

Answers

Answered by Zaysaa
107
Hello


Hope it helps u!
Attachments:

smudge18: thanks ma'am!!
Anonymous: Thanq @Zaysaa
RahulG11: Great
Zaysaa: Thqq
nishkarsh1206: Nice one
Answered by aquialaska
32

Answer:

To prove: \frac{cos\,x}{1-sin\,x}=tan(\frac{\pi}{4}+\frac{x}{2}

We use the following result:

cos 2x = cos²x - sin²x

sin 2x = 2sin x cos x

1 = sin²x + cos²x

Consider,

LHS

=\frac{cos\,x}{1-sin\,x}

=\frac{cos^2\,\frac{x}{2}-sin^2\,\frac{x}{2}}{cos^2\,\frac{x}{2}-sin^2\,\frac{x}{2}-2cos\,\frac{x}{2}sin\,\frac{x}{2}}

=\frac{(cos\,\frac{x}{2}-sin\,\frac{x}{2})(cos\,\frac{x}{2}+sin\,\frac{x}{2})}{(cos\,\frac{x}{2}-sin\,\frac{x}{2})^2}

=\frac{cos\,\frac{x}{2}+sin\,\frac{x}{2}}{cos\,\frac{x}{2}-sin\,\frac{x}{2}}

Divide Numerator and Denom,inator by cos (x/2)

=\frac{1+tan\,\frac{x}{2}}{1-tan\,\frac{x}{2}}

=\frac{tan\,\frac{\pi}{4}+tan\,\frac{x}{2}}{1-tan\,\frac{\pi}{4}tan\,\frac{x}{2}}

=tan\,(\frac{\pi}{4}+\frac{x}{2})

=RHS

Hence Proved.

Similar questions