Math, asked by Annuds, 7 months ago

prove that cos x - cos 2x + cos 3x / sin x - sin 2x + sin 3x = cot 2x​

Answers

Answered by pulakmath007
7

SOLUTION

TO PROVE

 \displaystyle \sf{ \frac{ \cos x -  \cos 2x  +  \cos 3x}{\sin x -  \sin 2x  +  \sin 3x} =  \cot 2x }

PROOF

LHS

 \displaystyle \sf{ =  \frac{ \cos x+  \cos 3x -  \cos 2x  }{\sin x+  \sin 3x -  \sin 2x  }  }

 \displaystyle \sf{ =  \frac{2 \cos  \frac{x + 3x}{2}  \cos  \frac{x - 3x}{2}  -  \cos 2x  }{2 \sin  \frac{x + 3x}{2}  \cos  \frac{x - 3x}{2} -  \sin 2x  }  }

 \displaystyle \sf{ =  \frac{2 \cos  \frac{4x}{2}  \cos  \frac{- 2x}{2}  -  \cos 2x  }{2 \sin  \frac{4x }{2}  \cos  \frac{ - 2x}{2} -  \sin 2x  }  }

 \displaystyle \sf{ =  \frac{2 \cos  2x  \cos  x  -  \cos 2x  }{2 \sin 2x  \cos x -  \sin 2x  }  }

 \displaystyle \sf{ =  \frac{\cos 2x (2  \cos x - 1)  }{ \sin 2x  (2\cos x -  1) }  }

 \displaystyle \sf{ =  \frac{\cos 2x   }{ \sin 2x  }  }

 \displaystyle \sf{ =  \cot 2x }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that (1+cos18)(1+cos54)(1+cos126)(1+cos162)=1÷16

https://brainly.in/question/29235086

2. Find the value of cot (-3155°)

https://brainly.in/question/6963315

Answered by asviyash84
2

Answer:

May it helps you...

Step-by-step explanation:

In this question only 4 formulas are used...

Firstly take LHS..

Then put the formulas in the question..

Then you find that your RHS be coming..

LHS =RHS

Hence proved

Thank you.

Attachments:
Similar questions