prove that cos x +cos 3x/ cos^2x -sin^2x =2 cos x
Answers
Answered by
0
Step-by-step explanation:
We will use well known formula: cos(a)+cos(b)=2cosa−b2cosa−b2.cos(a)+cos(b)=2cosa−b2cosa−b2.
cos5x+cos4x1−2cos3x=−cos2x−cosx
cos5x+cos4x1−2cos3x=−cos2x−cosx
⟺cos5x+cos4x=−cos2x−cosx+2cos2xcos3x+2cosxcos3x
⟺cos5x+cos4x=−cos2x−cosx+2cos2xcos3x+2cosxcos3x
⟺cos5x+cosx+cos4x+cos2x=2cos2xcos3x+2cosxcos3x
⟺cos5x+cosx+cos4x+cos2x=2cos2xcos3x+2cosxcos3x
Answered by
0
Answer:
cos5x+cos4x1−2cos3x=−cos2x−cosx
cos5x+cos4x1−2cos3x=−cos2x−cosx
⟺cos5x+cos4x=−cos2x−cosx+2cos2xcos3x+2cosxcos3x
⟺cos5x+cos4x=−cos2x−cosx+2cos2xcos3x+2cosxcos3x
⟺cos5x+cosx+cos4x+cos2x=2cos2xcos3x+2cosxcos3x
⟺cos5x+cosx+cos4x+cos2x=2cos2xcos3x+2cosxcos3x
Similar questions