Math, asked by king922, 1 year ago

Prove that: Cos x + Cos(x+ 2pi/3) + Cos (x + 4pi/3) =0

Answers

Answered by mysticd
22

 \boxed {\pink { cos A + Cos B = 2cos \Big(\frac{A+B}{2}\Big) cos \Big(\frac{A-B}{2}\Big)}}

 LHS = cos x + cos \Big( x +\frac{2\pi}{3}\Big) +cos \Big( x +\frac{4\pi}{3}\Big)

 = cosx + 2 cos \Big ( \frac{x+\frac{2\pi}{3} + x + \frac{4\pi}{3}}{2}\Big) cos \Big ( \frac{x+\frac{2\pi}{3} - \big( x + \frac{4\pi}{3}\big)}{2}\Big)

 = cos x + 2 cos \Big (\frac{2x + \frac{2\pi +4\pi}{3}}{2}\Big) cos \Big (\frac{\frac{2\pi -4\pi}{3}}{2}\Big)

 = cosx + 2 cos \frac{(2x + 2\pi)}{2} cos \frac{(-\pi)}{3}

 = cosx + 2 cos ( \pi + x ) cos\frac{\pi}{3}

 = cosx + 2 (-cos x ) \times \frac{1}{2}

 = cos x - cos x \\= 0 \\= RHS

 Hence\: Proved

•••♪

Answered by jonisantosh878
8

this is the answer please mark me as brainlist

Attachments:
Similar questions