Math, asked by Rahuljagotra, 11 months ago

prove that cos x + cos y whole square + sin x + sin y whole square equal to 4 cos square x minus x upon 2​

Answers

Answered by amitnrw
71

Answer:

(Cosx + Cosy)² + (Sinx + Siny)² = 4(Cos²((x - y)/2))

Step-by-step explanation:

prove that cos x + cos y whole square + sin x + sin y whole square equal to 4 cos square x minus y upon 2​

(Cosx + Cosy)² + (Sinx + Siny)² = 4(Cos²((x - y)/2))

LHS

= Cos²x + Cos²y + 2CosxCosy  + Sin²x + Sin²y + 2SinxSiny

= 1 + 1 + 2CosxCosy + 2SinxSiny

= 1 + 1 + 2(CosxCosy + SinxSiny )

= 2 + 2Cos(x -y)

= 2 ( 1 + cos(x-y))

= 2 ( 2Cos²((x-y)/2))

= 4Cos²((x-y)/2)

= RHS

(Cosx + Cosy)² + (Sinx + Siny)² = 4(Cos²((x - y)/2))

Answered by Anonymous
23

Answer:

that's your answers

hope it helps u

Attachments:
Similar questions