prove that cos x. cos (y-x) -sinx. (y-x) =cos y
Answers
Answered by
1
Answer:
Given,
cosy=xcos(a+y)
x=cos(a+y)cosy
differentiating w.r.t x, we get,
dxd(x)=dxd(cos(a+y)cosy)
1=dyd(cos(a+y)cosy)×dxdy
1=(cos2(a+y)sin(a+y)cosy−cos(a+y)siny)×dxdy
1=(cos2(a+y)sin((a+y)−y))×dxdy
1=cos2(a+y)sinadxdy
∴dxdy=sin
Similar questions