Math, asked by Anonymous, 1 year ago

prove that cos x/sin(90+x)+sin(-x)/sin(180+x) -tan(90+x)/cotx =3

Answers

Answered by ZaraAntisera
0

Answer:

solve\:for\:c,\:\frac{\cos \left(x\right)}{\sin \left(90+x\right)}+\frac{\sin \left(-x\right)}{\sin \left(180+x\right)}-\frac{\tan \left(90+x\right)}{c}otx=3\quad :

:\quad c=\frac{xot\tan \left(90+x\right)\sin \left(x+90\right)\sin \left(x+180\right)}{\cos \left(x\right)\sin \left(180+x\right)+\sin \left(-x\right)\sin \left(90+x\right)-3\sin \left(90+x\right)\sin \left(180+x\right)}

\cos \left(x\right)\sin \left(180+x\right)+\sin \left(-x\right)\sin \left(90+x\right)-3\sin \left(90+x\right)\sin \left(180+x\right)\ne \:0

Step-by-step explanation:

\frac{\cos \left(x\right)}{\sin \left(90+x\right)}+\frac{\sin \left(-x\right)}{\sin \left(180+x\right)}-\frac{\tan \left(90+x\right)}{c}otx=3

\frac{\cos \left(x\right)}{\sin \left(90+x\right)}+\frac{\sin \left(-x\right)}{\sin \left(180+x\right)}-\frac{xot\tan \left(90+x\right)}{c}=3

\mathrm{Multiply\:by\:LCM=}c\sin \left(x+90\right)\sin \left(x+180\right)

\frac{\cos \left(x\right)}{\sin \left(90+x\right)}c\sin \left(x+90\right)\sin \left(x+180\right)+\frac{\sin \left(-x\right)}{\sin \left(180+x\right)}c\sin \left(x+90\right)\sin \left(x+180\right)-

\frac{xot\tan \left(90+x\right)}{c}c\sin  (x + 90)sin(x+180) = 3csin(x+90)sin(x+180)

c\cos \left(x\right)\sin \left(x+180\right)+c\sin \left(-x\right)\sin \left(x+90\right)-xot\tan \left(90+x\right)\sin \left(x+90\right)\sin \left(x+180\right)=3c\sin \left(x+90\right)sin(x+180)

\mathrm{Add\:}xot\tan \left(90+x\right)\sin \left(x+90\right)\sin \left(x+180\right)\mathrm{\:to\:both\:sides}

c\cos \left(x\right)\sin \left(x+180\right)+c\sin \left(-x\right)\sin \left(x+90\right)-xot\tan \left(90+x\right)\sin \left(x+90\right)\sin \left(x+180\right)

xot\tan \left(90+x\right)\sin \left(x+90\right)\sin \left(x+180\right) = 3csin (x+90)sin(x+180)+xottan(90+x)sin(x+90)sin(x+180)

c\cos \left(x\right)\sin \left(x+180\right)+c\sin \left(-x\right)\sin \left(x+90\right)=3c\sin \left(x+90\right)\sin \left(x+180\right)+xot\tan \left(90+x\right)\sin \left(x+90\right)sin(x+180)

\mathrm{Subtract\:}3c\sin \left(x+90\right)\sin \left(x+180\right)\mathrm{\:from\:both\:sides}

c\cos \left(x\right)\sin \left(x+180\right)+c\sin \left(-x\right)\sin \left(x+90\right)-3c\sin \left(x+90\right)\sin \left(x+180\right)=

3c\sin \left(x+90\right)\sin \left(x+180\right) +xot\tan \left(90+x\right)\sin \left(x+90\right)\sin \left(x+180\right)-3c\sin \left(x+90\right)\sin \left(x+180\right)

c\cos \left(x\right)\sin \left(x+180\right)+c\sin \left(-x\right)\sin \left(x+90\right)-3c\sin \left(x+90\right)\sin \left(x+180\right)=

xot\tan \left(90+x\right)\sin \left(x+90\right) sin(x+180)

c\left(\cos \left(x\right)\sin \left(180+x\right)+\sin \left(-x\right)\sin \left(90+x\right)-3\sin \left(90+x\right)\sin \left(180+x\right)\right)=

xottan(90+x)sin(x+90)sin(x+180)

\mathrm{Divide\:both\:sides\:by\:}\cos \left(x\right)\sin \left(180+x\right)+\sin \left(-x\right)\sin \left(90+x\right)-3\sin \left(90+x\right)\sin \left(180+x\right);

cos(x)sin(180+x) +sin(-x) sin(90+x) - 3sin(90+x)sin(180+x)\neq 0

Similar questions