prove that cos(x+y)=cosx.cosy-sinx.siny
Answers
To prove :
cos (x + y) = cosx.cosy-sinx.siny
Proof :
we know,
cos (-x) = cos x ,
sin (-x) = - sin x
and
cos (x - y)
= cos x . cos y + sin x . sin y
therefor,
LHS = cos (x + y) = cos (x - (-y))
=)) cos x . cos (-y) + sin x . sin (-y)
=)) cos x. cos y + sin x. (-sin y )
=)) cos x. cos y - sinx . sin y
= RHS
hence proved
Answer:
Let us take a circle of radius one and let us take 2 points P and Q such that P is at an angle x and Q at an angle y
as shown in the diagram
Therefore, the co-ordinates of P and Q are P(cosx,sinx),Q(cosy,siny)
Now the distance between P and Q is:
(PQ)^2=(cosx−cosy)^2+(sinx−siny)^2=2−2(cosx.cosy+sinx.siny)
Now the distance between P and Q u\sin g \cos ine formula is
(PQ)^2=1^2+1^2−2cos(x−y)=2−2cos(x−y)
Comparing both we get
cos(x−y)=cos(x)cos(y)+sin(x)sin(y)
Substituting y with −y we get
cos(x+y)=cosxcosy−sinxsiny