Math, asked by Vyomcool, 9 months ago

prove that cos0+sin0-1/cos0-sin0+1 = cosec0-cot0​

Answers

Answered by Anonymous
3

Question:-

 \rm \implies \:  \dfrac{ \cos\theta +  \sin \theta - 1}{ \cos\theta  -  \sin\theta+ 1}  =  \csc\theta -  \cot \theta

Solution:-

\rm \implies \:  \dfrac{ \cos\theta +  \sin \theta - 1}{ \cos\theta  -  \sin\theta+ 1}  =  \csc\theta -  \cot \theta

\rm \implies \:  \dfrac{ \cos\theta +  \sin \theta - 1}{ \cos\theta  -  \sin\theta+ 1}  =  \dfrac{1}{ \sin( \theta) }  -  \dfrac{ \cos( \theta) }{ \sin( \theta) }

\rm \implies \:  \dfrac{ \cos\theta +  \sin \theta - 1}{ \cos\theta  -  \sin\theta+ 1}  =  \dfrac{1 -  \cos\theta }{ \sin\theta }

Using cross multiplication method

 \rm \implies \:  \:  \sin \theta( \cos \theta +  \sin\theta - 1) = (1 -  \cos \theta)(\cos \theta  -  \sin\theta  +  1)

 \rm \implies \:  \sin\theta\cos \theta  +  \sin ^{2} \theta -  \sin \theta =  \cos \theta  -   \sin\theta  + 1 -  \cos {}^{2}  \theta  +   \sin \theta \cos\theta -  \cos\theta

 \rm \implies \:   \cancel{\sin\theta\cos \theta } +  \sin ^{2} \theta -  \sin \theta =  \cos \theta  -   \sin\theta  + 1 -  \cos {}^{2}  \theta  +  \cancel{  \sin \theta \cos\theta} -  \cos\theta

\rm \implies \:      \sin ^{2} \theta -  \sin \theta =  \cos \theta  -   \sin\theta  + 1 -  \cos {}^{2}  \theta  -  \cos\theta

\rm \implies \:      \sin ^{2} \theta -  \sin \theta =  0 -   \sin\theta  + 1 -  \cos {}^{2}  \theta

\rm \implies \:      \sin ^{2} \theta -  \sin \theta + \sin\theta =       1 -  \cos {}^{2}  \theta

\rm \implies \:      \sin ^{2} \theta =      1 -  \cos {}^{2}  \theta

\rm \implies \:      \sin ^{2} \theta +\cos {}^{2}  \theta    =      1

 \implies1 = 1

hence proved

Similar questions