Math, asked by vivekraj95, 1 year ago

Prove that cos10° cos30° cos50°cos70° = 3\16

Answers

Answered by mathdude200
9
please find the attachment
Attachments:
Answered by swethassynergy
0

It is prove thatcos 10\textdegree cos30\textdegree cos50\textdegree cos 70\textdegree =\frac{3}{16}

Step-by-step explanation:

Given:

cos 10\textdegree cos30\textdegree cos50\textdegree cos 70\textdegree =\frac{3}{16}

To Find:

To prove that cos 10\textdegree cos30\textdegree cos50\textdegree cos 70\textdegree =\frac{3}{16}

Formula Used:

2 cos P cos Q = cos ( P+Q) + cos(P-Q)  -------------------------- Identity no.01

Solution:

As given-cos 10\textdegree cos30\textdegree cos50\textdegree cos 70\textdegree =\frac{3}{16}

LHS   =cos 10\textdegree cos30\textdegree cos50\textdegree cos 70\textdegree

        =  cos 30\textdegree( cos10\textdegree cos50\textdegree) cos 70\textdegree

        =  \frac{\sqrt{3} }{2}.\frac{1}{2}  ( 2cos10\textdegree cos50\textdegree) cos 70\textdegree

Applying identity no. 01.  2 cos P cos Q = cos ( P+Q) + cos(P-Q)

         =  \frac{\sqrt{3} }{2}.\frac{1}{2}  ( cos60\textdegree +cos40\textdegree) cos 70\textdegree

         =  \frac{\sqrt{3} }{4}  ( cos60\textdegree cos70\textdegree +cos40\textdegree cos70\textdegree)

Using value of cos60\textdegree=\frac{1}{2}

        =  \frac{\sqrt{3} }{4}  ( \frac{1}{2}  cos70\textdegree +cos40\textdegree cos70\textdegree)

        =  \frac{\sqrt{3} }{8}  ( \ cos70\textdegree + 2cos40\textdegree cos70\textdegree)

Applying identity no. 01.  2 cos P cos Q = cos ( P+Q) + cos(P-Q)

        =  \frac{\sqrt{3} }{8}  ( \ cos70\textdegree + cos110\textdegree + cos30\textdegree)

        =  \frac{\sqrt{3} }{8}  ( \ cos70\textdegree + cos(180\textdegree- 70\textdegree) + cos30\textdegree)

Using value of cos(180\textdegree-70\textdegree) = - cos 70 \textdegree  and cos30\textdegree=\frac{\sqrt{3} }{2}

        =  \frac{\sqrt{3} }{8}  ( \ cos70\textdegree + cos- 70\textdegree) + \frac{\sqrt{3} }{2} )

       =  \frac{\sqrt{3} }{8}  ( \frac{\sqrt{3} }{2} )

       =\frac{3}{16}

      = RHS

Because LHS= RHS

Hence ,  it is proved that cos 10\textdegree cos30\textdegree cos50\textdegree cos 70\textdegree =\frac{3}{16}

Similar questions