Prove that Cos165°+Sin165°=Cos135°
Answers
Answered by
1
Step-by-step explanation:
we know that ,
#color(red)((1)sin(x+y)=sinxcosy+cosxsiny#
Here ,
#sin165^circ=color(red)(sin(135^circ+30^circ)tocolor(red)(Apply(1)#
#sin165^circ=color(red)(sin135^circcos30^circ+cos135^circsin30^circ#
#sin165^circ=1/sqrt2*sqrt3/2+(-1/sqrt2)*1/2#
#sin165^circ=1/sqrt2*sqrt3/2-1/sqrt2*1/2#
#sin165^circ=(sqrt3-1)/(2sqrt2)#
#sin165^circ=(sqrt3-1)/(2sqrt2)xxsqrt2/sqrt2#
#sin165^circ=(sqrt6-sqrt2)/4#
Similar questions